Mathematics, Analysis

1) Let $n \geq 1$ be an integer. We endow \mathbb{R}^{n} with the usual scalar product given by

$$
\langle x, y\rangle=\sum_{k=1}^{n} x_{k} y_{k}
$$

for any $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and any $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$. We denote by $\|\cdot\|$ the norm defined by $\|x\|^{2}=\langle x, x\rangle$. Then $\mathbf{M}_{n}(\mathbb{R})$, the space of $n \times n$ matrices, is equipped with the norm

$$
\|T\|_{2}=\sup _{x \neq 0} \frac{\|T x\|}{\|x\|}
$$

where the supremum is taken over all x in \mathbb{R}^{n} with $x \neq 0$.
Given T in $\mathbf{M}_{n}(\mathbb{R})$, we denote by T^{*} the adjoint (or transpose) matrix of T.
a) Prove that $\|S T\|_{2} \leq\|S\|_{2}\|T\|_{2},\left\|T^{*}\right\|_{2}=\|T\|_{2}$ and $\left\|T^{*} T\right\|_{2}=\|T\|_{2}^{2}$.
b) Assume for this question that $T^{*}=T$. Show that, for any integer N in \mathbb{N},

$$
\left\|T^{N}\right\|_{2}=\|T\|_{2}^{N}
$$

c) Deduce that for any T in $\mathbf{M}_{n}(\mathbb{R})$ and any integer N in \mathbb{N},

$$
\left\|\left(T^{*} T\right)^{N}\right\|_{2}=\|T\|_{2}^{2 N} .
$$

2) Consider a sequence $\left(T_{j}\right)_{j \in \mathbb{Z}}$ of matrices in $\mathbf{M}_{n}(\mathbb{R})$. Assume that there exists a function $\omega: \mathbb{Z} \rightarrow] 0,+\infty\left[\right.$ such that $\sum_{i \in \mathbb{Z}} \omega(i)<+\infty$ and such that, for any pair $(j, k) \in \mathbb{Z} \times \mathbb{Z}$,

$$
\begin{align*}
& \sqrt{\left\|T_{j}^{*} T_{k}\right\|_{2}} \leq \omega(j-k) \tag{1}\\
& \sqrt{\left\|T_{j} T_{k}^{*}\right\|_{2}} \leq \omega(j-k) \tag{2}
\end{align*}
$$

The goal of this question is to prove that, for any finite subset F of \mathbb{Z},

$$
\begin{equation*}
\left\|\sum_{j \in F} T_{j}\right\|_{2} \leq \sigma \quad \text { where } \quad \sigma=\sum_{i \in \mathbb{Z}} \omega(i) . \tag{3}
\end{equation*}
$$

a) Prove that $\left\|T_{j}\right\|_{2} \leq \omega(0)$ for any $j \in \mathbb{Z}$.
b) Fix an integer $N \geq 1$ and a finite subset F of \mathbb{Z}. Denote by $I=F^{2 N}=\overbrace{F \times \cdots \times F}^{2 N \text { times }}$ the set of $(2 N)$-uples of integers in F. Prove that for any $\left(i_{1}, i_{2}, \ldots, i_{2 N}\right) \in I$,

$$
\left\|T_{i_{1}}^{*} T_{i_{2}} T_{i_{3}}^{*} T_{i_{4}} \cdots T_{i_{2 N-1}}^{*} T_{i_{2 N}}\right\|_{2} \leq \omega(0) \omega\left(i_{1}-i_{2}\right) \omega\left(i_{2}-i_{3}\right) \cdots \omega\left(i_{2 N-2}-i_{2 N-1}\right) \omega\left(i_{2 N-1}-i_{2 N}\right) .
$$

c) Deduce that

$$
\sum_{i_{1}} \sum_{i_{2}} \cdots \sum_{i_{2 N-1}} \sum_{i_{2 N}}\left\|T_{i_{1}}^{*} T_{i_{2}} T_{i_{3}}^{*} T_{i_{4}} \cdots T_{i_{2 N-1}}^{*} T_{i_{2 N}}\right\|_{2} \leq(\operatorname{card} \mathrm{F}) \sigma^{2 \mathrm{~N}}
$$

where σ is as defined in (3) and the summation is taken over all $\left(i_{1}, i_{2}, \ldots, i_{2 N-1}, i_{2 N}\right)$ in I.
d) Prove that $U=\sum_{j \in F} T_{j}$ satisfies the desired estimate (3).
3) Let $K: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}$ be a C^{1} function satisfying, for some constant $B>0$,
i) $|K(x)| \leq B|x|^{-1}$ and the derivative satisfies $\left|K^{\prime}(x)\right| \leq B|x|^{-2}$ for any $x \neq 0$,
ii) $K(-x)=-K(x)$ for any $x \neq 0$.
a) It is admitted that there is a C^{∞} function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ such that

1. $\varphi(x)=\varphi(-x)$;
2. $\varphi(x)=1$ if $|x| \leq 1$ and $\varphi(x)=0$ for $|x| \geq 2$.

For any j in \mathbb{Z} define $K_{j}(x)$ by $K_{j}(x)=\left(\varphi\left(2^{-j} x\right)-\varphi\left(2^{1-j} x\right)\right) K(x)$. Prove that

$$
\begin{aligned}
& \int_{\mathbb{R}} K_{j}(x) d x=0, \quad \sup _{j \in \mathbb{Z}} \sup _{x \in \mathbb{R}} 2^{2 j}\left|K_{j}^{\prime}(x)\right|<+\infty \\
& \sup _{j \in \mathbb{Z}} \int_{\mathbb{R}}\left|K_{j}(x)\right| d x<+\infty, \quad \sup _{j \in \mathbb{Z}} 2^{-j} \int_{\mathbb{R}}|x|\left|K_{j}(x)\right| d x<+\infty
\end{aligned}
$$

b) Given two integers j, k in \mathbb{Z} with $j \geq k$, set

$$
K_{j, k}(x)=\int_{\mathbb{R}} K_{k}(y) K_{j}(x+y) d y
$$

Prove that there exists a constant C_{1} (independent of $\left.j, k, x\right)$ such that $\left|K_{j, k}(x)\right| \leq C_{1} 2^{k-2 j}$. Deduce that

$$
\int_{\mathbb{R}}\left|K_{j, k}(x)\right| d x \leq C_{2} 2^{-|j-k|}
$$

for some fixed positive constant C_{2} independent of j and k.

Remark. Let us admit that the estimate (3) holds when \mathbb{C}^{n} is replaced by a Hilbert space (then T_{j} are bounded operators). Also, instead of finite sums, one can consider infinite sums of operators T_{j} that satisfy the bounds (1) and (2). The previous analysis allows to prove that the operator T defined (formally) by

$$
T u(x)=\int_{\mathbb{R}} K(x-y) u(y) d y
$$

is bounded on L^{2}.

